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A MARKOVIAN MODEL FOR ASSESSMENT OF

PERSONNEL HIRING PLANS

Lawrence G. Katz
Goddard Space Flight Center

INTRODUCTION

The environment in which the National Aeronautics and Space Administration is operating

today is markedly different from the one in which it has operated in the past. A particular

change is in the area of personnel employment ceilings. After more than a decade of opera-
tion, NASA underwent its first major work force adjustment in August 1971. A second

major adjustment was completed during April 1973. NASA today finds itself in the position
of having to operate with continually fewer people.

To complicate matters, the onset of the low-cost era brings with it major changes in the

manner in which NASA can accomplish its goals. During this era, NASA will rely more

heavily upon contractor personnel, in keeping with the President's desire to reduce the size

of the Federal bureaucracy. A second major result of entry of NASA into the low-cost era

concerns the use of standard subsystems for spacecraft in lieu of specially-designed units.

NASA management has determined that operation in this era will make the use of standard
subsystems a way of life. Consequently, the optimal skill mix for the low-cost era will

undoubtedly be different from that for the present era. Thus, the skill mix problem will

begin to take on added importance.

At Goddard Space Flight Center, directors of administrative and technical Directorates are

submitting personnel plans on a fiscal year basis. In its broadest sense, a personnel plan is

a scheduling of all personnel actions (hires, promotions, within-grade increases, quality

increases, cash awards, noncash awards, training, and reassignments). GSFC management

must combine the Directorates' personnel plans to obtain a personnel plan for this Center.

At present, two major personnel constraints are affecting NASA-population ceiling and

average grade. Both of these are considered when a personnel plan is devised. The model

presented in this report considers only the personnel ceiling constraint. However, the

model possibly could be extended to incorporate the average grade constraint.

How can GSFC management rationally assess a particular personnel plan's chances of suc-

cess as the planning period progresses? The model considers a plan to be successful if the

final population size, at the end of the planning period, lies within a range specified by

management.
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At the Directorate level, this model can be used to assess the probability of success of
plans concerned with:

* Skill codes

* Combinations of skill codes

At the GSFC level, this model can be used to estimate the probability of success of plans
concerned with:

* Skill codes within combinations of Directorates

* Combinations of skill codes within combinations of Directorates

This model can also be used to keep track of plans of various durations, thus allowing
management to modify a plan during the active planning period. In the midst of the
planning period, it is possible to determine the effect of plan changes on the probability of
success.

In an iterative manner this method can be used to devise plans with specified probabilities
of success. Prior to the beginning of the planning period, plans can be assessed, modified,
and reassessed until a suitable plan is devised.

The personnel plan assessment model described in the following section can be used to
track personnel plans probabilistically. Briefly, the model is based on the theory of Markov
processes. Probabilities of the population's size changing from one value to another, in
one month's time, are estimated. These probabilities are used to determine the probabilities
associated with future population sizes.

THE MODEL

This model utilizes the theory of Markov chains. In terms of a system where the various
states of the system are the GSFC population sizes at specified points in time, a Markov
chain can be defined in the following manner. A Markov chain is a stochastic process where
the probability that the GSFC population size, one time period hence, depends only on the
present size and not on past sizes. In this respect, a Markov chain is a memoryless process.
It is not the author's intent to develop the theory of Markov chains in this document. A
short, but excellent discussion of the theory of Markov chains may be found in Hillier and
Lieberman (Reference I). Various properties of Markov chains will be used, without formal
proof, throughout the description of this model. Proofs of the properties may be found in
various texts such as Karlin or Feller (References 2 and 3).

The size of the GSFC population is basically a function of two processes-a personnel
departure (separation) process and a personnel arrival (hiring) process. For the purposes
of this model, the arrival process is considered to be completely deterministic. That is,
management completely controls the numbers and scheduling of personnel hiring. Thus,
in a probabilistic sense, the GSFC population is a function of only one stochastic process-
the departure process.
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First, one may consider only the stochastic departure process. This process will describe,
in a probabilistic sense, how the GSFC population size changes from one time period to the

next. Any suitable length of time period may be used within the model. For the GSFC

population size system, a time period length of 1 month was chosen. This was the finest

time resolution available in the historical personnel data base. It was also felt that any

finer time resolution would not be more useful from a planning point of view.

To provide information of the detail described in the Introduction, monthly data on per-

sonnel departures were collected by skill code (clerical, professional administrative, scien-

tist and engineer, technician, and wage grade) within Directorate. These 29 subpopulations,
shown in Table 1, can be combined to yield probabilistic descriptions of the larger popula-
tions, including the entire GSFC population.

Table 1

GSFC Skill Code and Directorate Categories.

Skill Code Directorate Code

100/200 300 400 500 600 700 800

Clerical X X X X X X X

Professional Administrative X - X X X X X X

Scientist, Engineer X X X X X X X

Technician X X X X X X X

Wage Grade X

Departure Process

Basically, the departure process can be represented by a square matrix such as that presented

in Figure 1 for professional administrative personnel in Directorate code 300.

The entries, P.W, for the 1-month transition matrix in Figure 1 are defined as follows:

P.. = prob [Number of professional administrative personnel in code 300
1 month hence equals j, given the present number of profes-

sional administrative personnel in code 300 equals i]

In this example, both i and j take on the values 0, 1, 2, 3, 4, 5, and 6.

The method used to obtain the various 1-month transition probabilities will be described

in the last section. At this point though, it will be beneficial to discuss some of the proper-

ties of the 1-month transition matrix:

1. The 1-month transition matrix is square (the number of rows equals the number of

columns).
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Number of professional administrative
personnel 1 month hence

6 5 4 3 2 1 0

6 P66 P65 P64 P63 P62 P61 P60

5 P56  P 5 5  P 5 4  P53 P2 51 P50

Present 4 P46 P45 P44 P43 P42 P41 P40
number of
professional 3 P36 P35 P34 P33 P32 P31 P30
administrative
personnel 2 P26 P25 P24 P23 P22 P21 P20

1 P1 6  P 1 5  P14 P13 P12 P11 P10

0 P06  P0 5  P04  P 0 3  P02 P01 P00

Figure 1. One-month transition matrix for code 300.

2. Since each Pi.. is a probability, it must necessarily lie in the range 0 < P < 1.

3. The 1-month transition matrix enumerates all possible I-month transitions.

4. Since a present population size of i must become some population size j in 1 month
hence, all row sums must be unity

E P V=1
* j columns

5. Since this transition matrix probabilistically describes a departure process
P.a E 0 for all j > i.

Considering these properties and with the assumption of no hires, the general 1-month
transition matrix of Figure 1 may be written as in Figure 2.

Except for the entry I in the lower right corner of Figure 2, explicit use of property 4 has
not been made. At this point, assuming no hiring takes place, it is possible to answer ques-
tions about the size of the code 300 professional administrative staff after a I-month time
period.

Examples of Departure Process

As an example, suppose the present size of the code 300 professional administrative staff
is 4. What is the probability that the staff will be 3 one month from now? This probability
can be found by entering the matrix at row 3 (present size = 4), moving across to column 4
(size 1 month hence = 3), and reading P4 3 '
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Number of professional administrative
personnel 1 month hence

6 5 4 3 2 1 0

6 P66 P65 P64 P63 P62 P61 P60

5 0 P55  P54  P53  P5 2  P51 Pso

Present 4 0 0 P44 P43 P42 41 40
number of
professional 3 0 0 0 P33 P32 P31 P30
administrative
personnel 2 0 0 0 0 P22 P21 P2o

1 0 0 0 0 0 P,, Pro

0 0 0 0 0 0 0 1

Figure 2. One-month separation transition matrix for code 300.

In a similar fashion, one may also answer questions of the following type: Assume the

present size is 4; What is the probability that the staff size 1 month hence will be between

3 and 1, inclusive? That is, what is the probability that the staff size 1 month from now

will be 3, 2, or I? All possible staff sizes 1 month hence are mutually exclusive (only one

can occur at a time). Thus, one really has three separate questions:

1. What is the probability that the staff size will be 3?

2. What is the probability that the staff size will be 2?

3. What is the probability that the staff size will be 1?

The procedure for answering each of the three questions is identical to that used in

answering the question in the first part of this example. For question 1 the result is P4 3 .

For questions 2 and 3 it is P4 2 and P41, respectively. Since these staff sizes are mutually

exclusive, one adds the three probabilities. Thus, the probability of a staff size between 3

and 1, inclusive, is P4 3 + P4 2 + P4 1. The same result could have been obtained by making

use of property 4. Property 4 states that P4 4 +'P 4 3 + P4 2 + P4 1 + P 4 0 = 1. Using this

information, the answer is 1 - P4 4 - P4 0 . It is immediately evident that P4 3 + P4 2 + P4 1 =

1-P 44 -P 40o

Example of Arrival-Departure Process

A deterministic hiring plan is assumed to be in effect. Again, suppose the present staff size

is 4; but now, during the month, one additional staff member is scheduled to be hired. We

now assume that this new member will not leave during the remaining portion of the month.

What is the probability that the staff size 1 month from now will remain 4? This question

is probabilistically equivalent to: What is the probability that the staff size will decrease

from 4 to 3 in one month? There is no staff size, other than 3, that will, with the hiring of
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one additional member result in a staff size of four, I month hence. Thus, as in the

previous example, the solution to this problem is P43 '

Although, in these examples, the 1-month transition matrix was easily displayed, in most
cases this is not feasible. In some cases, the number of rows and columns necessary to
probabilistically describe the possible I-month transitions exceeds 100. For this reason
a FORTRAN program for the 360/91 was written. This program is used to obtain solu-
tions to problems similar to the ones presented in the previous three examples.

Tracking Periods in Excess of 1 Month

The model as described to this point can be used to track personnel plans for each skill
code/Directorate category for periods of 1 month. One can increase the tracking period

from 1 month up to K months where K = 2, 3,..., 12. Thus, answers can be obtained to

questions about staff sizes for time periods up to 12 months from the present. It is
assumed that transitions from one month to the next are independent. This is nothing
more than the memoryless property of Markov chains referred to above. Increased time
periods are easily accommodated, at least in principle. To obtain a matrix which probabilis-
tically describes transitions over a K-month period, the 1-month transition matrix is raised
to the Kth power. That this accomplishes what is needed is not immediately evident.
Karlin and Feller (References 2 and 3) may be consulted for proof of this assertion. The
following illustration shows how this matrix multiplication accounts for all possible
transitions.

Consider the simple 1-month transition matrix:

Size 1 Month Hence

2 1 0

2 P 22  P 2 1  P20
Present 1
Size P12 P 10

0 P02 P01 P00

Starting with present size = 2, Table 2 enumerates all possible ways that the system size
may be 0 after 2 months.

Table 2

Two-Month System Size Changes.

Case Present Size Size 1 Month Hence Size 2 Months Hence

1 2 2 0
2 2 1 0
3 2 0 0
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Because of the independence of the monthly transitions, the probabilities associated with
these three exclusive and exhaustive possibilities are easily found:

Case Probability

1 P 22 P2o

2 P21 PIo

3 P2o0 Poo

Thus, the probability of transition from a present size of 2 to a size of 0 in exactly 2 months
is given by

P22 P2o0 + P21 Po10 + P20 P0oo

Now, the square of the 1-month transition matrix is

p22 p21 p20 2 22 21 20 ( 22 21 20

02 01 P0 0  P02 P0 1  00 02 01 P 0

Performing the indicated matrix multiplication, under rules found in many texts such as
Sokolnikoff and Redheffer (Reference 4), the following 2-month transition matrix is
obtained

Size 2 Months Hence

S P22 .P22 +P1 .P 12 +P20 .P02  P 22 P2 1 +P2 1 .P11+P20.P0 1  P 22 .P20 +P2 1 .P10 +P20.P 00

Presenti1.+ +p P p 'P p +P p+P p
Size 12 22 11 12 10 02 12 21 11 11 10 01 12 20 11 to 10 00

0 Po2 22 01 12 00 02 02 21 01 11 00 01 02 20 01 10 00 00/

The upper right-hand element of this matrix is seen to be the same expression as for the

2-month transition probability after the previous enumeration. Again, this is not intended
as proof, but merely as an illustration. In similar fashion, the K-month transition matrices
may be developed from 1-month transition matrices.

Problems of the type encountered in the previous examples for time periods in excess of

1 month, can be handled with the K-month transition matrices. The same methods of

attack may be used, since the only difference in interpretation would be the time periods
over which the transitions occur. It should be noted that the ranges of present sizes and
I-month future sizes are preserved under the matrix multiplication.
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Matrix multiplication, especially on large matrices, can be very cumbersome. Raising even
a 3-by-3 matrix to the 12th power is a fairly time consuming undertaking when done by
hand. A second FORTRAN program for the 360/91 was written to perform all necessary
matrix multiplications. Thus, by executing the two FORTRAN programs sequentially,
solutions to questions about possible future staff sizes can be obtained.

One additional technique is still required before solutions can be obtained for problems of

the type referred to in the Introduction. Some method must be found to combine various

skill code/Directorate groups in a probabilistically consistent way.

Examination of the first three properties of the transition matrices reveals that each row of

the matrices is itself a probability density function. A complete definition and description
of probability density functions can be found in Feller (Reference 3). Given the present
population size, a complete probability description of future population sizes is available
within each row. Thus, a combination of skill code/Directorate categories amounts to a
logical summation of probability density functions.

To answer questions regarding combinations of various skill code/Directorate categories
a number of probability density functions must be combined. To keep the problem
tractable, only certain probability density functions were feasible for fitting to the

matrix rows. Combinations of the probability density function chosen should possess
an easily determinable form. Transitions within the various skill code/Directorate cate-
gories were assumed to be mutually independent. Each row of the various transition
matrices was fitted by a unique Poisson probability density function. This function was
chosen because of the binomial nature of the transition probabilities. It can be shown
(Reference 3) that sums of independent, identical, or nonidentical Poisson probability
density functions result in another Poisson probability density function. This probability
density function was then subjected to further analysis to yield the needed information
about transitions within the combination of skill code/Directorate categories.

At GSFC, since many of the skill code/Directorate transition matrices are rather large,
problems regarding probabilities of various transitions are handled within the Resource
Planning Office of the Financial Management Division on a one-by-one basis. It is not
feasible to publish the totality of results since these would involve an astronomical number
of combinations of possibilities.

In an operational mode, this model can provide information on a monthly basis. Figure 3
is an example of the manner in which the information could be provided to management.
Information pertaining to each Directorate would appear on a separate sheet.

8



Directorate 100/200
Planning Period 7/73 - 7/74
Months Left in Planning Period 10

Original Hiring Plan Current Hiring Plan

48 Clerical 39 Clerical

39 Professional Administrative 34 Professional Administrative

4 Scientist, Engineer 4 Scientist, Engineer

6 Technician 4 Technician

12 Wage Grade 8 Wage Grade

Current Plan Success Probability 0.85

History of Plan Success Probabilities

Months to Go Plan Success Probability

12 0.96

11 0.89

10 0.85

9 X

8 X

7 X

6 X

5 X

4 X

3 X

2 X

1 X

Note: X indicates future time periods.

Figure 3. Example of code 100/200 hiring plan assessment.



DERIVATION OF I-MONTH TRANSITION PROBABILITIES

The historical personnel data base for the 3-year period FY 1970 through FY 1972 was

analyzed to obtain the number of separations per month in each of the 29 skill code/
Directorate categories listed in Table 1. Also obtained from this data base were average
fiscal year population sizes for these categories. The probability that any individual departs
from his particular skill code/Directorate category during any one month was estimated in

the following manner:

Let Dh = number of departures from skill code/Directorate category h during month i
1

i = 1, 2,..., 36 (months of FY 1970-1972)

Sh = average skill code/Directorate category h population size during FY k

k = FY 1970, 1971, 1972

ph = prob [any individual departs from skill code/Directorate category h in any
one month]

Then the 1-month departure probabilities are

36 1972

ph= D 12 S (1)

i=1 K=1970

Analysis of the 3-year historical personnel data base yielded 1-month departure probabilities,
ph, for each of the 29 (h = 1, ,29) skill code/Directorate categories. These values are

presented in Table 3.

At the beginning of each month, each individual must decide whether or not to remain in
the same skill code/Directorate category. Probabilistically, this amounts to an individual
tossing a biased coin to make the decision. A toss resulting in a "head" will indicate the
decision that the individual will remain in the same skill code/Directorate category during
the month, while the outcome "tail" will indicate the decision that the individual will leave
his particular skill code/Directorate category during the month.

Toss Outcome Prob [Toss Outcome] Action

Tail ph leave

Head I - ph remain

The result is a series of Bernoulli trials, each individual within the same skill code/Direc-
torate category having to make the same decision. If there are N individuals in skill code/
Directorate category h, then the probability that exactly M (M < N) will leave during the
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Table 3

GSFC Skill Code/Directorate 1-Month Separation Probabilities

Skill Code Directorate ph

Clerical 100/200 0.018
Professional Administrative 100/200 0.008
Scientist, Engineer 100/200 0.011
Technician 100/200 0.006
Wage Grade 100/200 0.006

Clerical 300 0.012
Professional Administrative 300 0.010
Scientist, Engineer 300 0.003
Technician 300 0.002

Clerical 400 0.019
Professional Administrative 400 0.0001*
Scientist, Engineer 400 0.002
Technician 400 0.0001*

Clerical 500 0.012
Professional Administrative 500 0.0001*
Scientist, Engineer 500 0.001
Technician 500 0.002

Clerical 600 0.014
Professional Administrative 600 0.007
Scientist, Engineer 600 0.004
Technician 600 0.003

Clerical 700 0.013
Professional Administrative 700 0.004
Scientist, Engineer 700 0.003
Technician 700 0.003

Clerical 800 0.011
Professional Administrative 800 0.001
Scientist, Engineer 800 0.005
Technician 800 0.003

*Indicates 0 separations during 3-year period FY 1970-1972; ph assumed equal to 0.0001.
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month can be shown (Reference 3) to follow the binomial probability density function

b(M;N, ph):

b(M;N, ph)(N) [ph] M [1 _-ph] N-M (2)

where M = 0, 1, . . ., N

IN) N!

M) M! (N - M)!

N! = N(N-1) (N-2) . . . (N-(N-1))

b (M; N, ph), being the probability of M departures from a population size of N, is identical

to the transition probability PhN-M "

From this formula it can be seen that the probability that M individuals will leave skill

code/Directorate category h during any one month depends upon more than just ph and M.

It is also a function of the population size, N, of category h. This dependence upon the

population size of the category has a marked influence on the values of the 1-month tran-

sition probabilities. As an illustration, consider the matrix in Figure 1. Although P64 and

Ps a each refer to a situation where two professional administrative personnel depart code

300 during any one month, the values of these probabilities are in general different if

computed by using Equation (2):

P64 :
N=6
M=6-4=2

P64 ( 2)[' jlph16- 2

P53.

N=5

M=5-3=2

Pss =() [ph2 1 -Ph 15-2

P64  [6!/2!4!1 [ph 2 [1- p 14

P53  5!/2!3!I [ph j2 [ - 1

= tI1 -Ph
4 1

Thus P64 = P53 only if [ 1 - ph = or equivalently, only if ph .
6 3
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For the purposes of this model, it is assumed that skill code/Directorate category h has a

lowest allowable population size Lh. This assumption was made to facilitate the necessary

matrix computations. The error introduced will be directly proportional to the probability

of occurrence of a transition to a population size below Lh. An estimate of Lh was obtained

by the use of Tchebycheff's Inequality (Reference 3). One version of this inequality states

that the probability of occurrence of a value of a random variable more than n standard

deviations above or below its mean is less than 1/n2 . Since this model is ultimately con-

cerned with tracking personnel plans for periods of time of up to 1 year, Tchebycheff's

Inequality was used with mean annual departure and annual standard deviation. (The mean

annual departures are 12 times the mean monthly departures.) The relation between the

monthly departures standard deviation and the annual departures standard deviation is:

Annual departures standard deviation = (12) / X (Monthly departures standard deviation).

Table 4 lists the mean annual departures and annual standard deviations for the 29 skill

code/Directorate categories as obtained from an analysis of the historical personnel data

base for the 3 years FY 1970 through 1972.

The current (May 1973) population sizes for the various skill code/Directorate categories

are listed in Table 5.

Utilizing the data presented in Tables 4 and 5 along with Tchebycheff's Inequality, a
99 percent lower bound (Lh9) was computed for each of the 29 skill code/Directorate

categories. This 99 percent lower bound is to be interpreted as follows: In the long run,

only 1 time in 100 will the final subpopulation (skill code/Directorate) size be less than

Lh,. Values of this bound are listed in Table 6.

Equation (2) will not yield correct transition probabilities for those matrices for which

Lh > 0. In this case, M takes on all values between Lh and N, inclusive, while the general

binomial variable takes on all values between 0 and N inclusive. With Lh > 0, the transi-

tion probability is conditional; that is, the probability that the future size is j given the

present size i, is conditioned on the future size being equal to or greater than Lh .This is

quantitatively expressed in Equation (3), where M = Lh,..., N

(NM) PI p 1 - ph NM
b (M; N, ph, Lh) (3)

NM N-M

M=L
h

If Lh is equal to 0, Equation (3) and Equation (2) are identical because the denominator of

the right side of Equation (3) is then equal to 1. Equation (3) was used to generate the

necessary 1-month transition probabilities since, as shown above for b(M; N, ph)

b (M; N, ph, Lh  p ,NM
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Table 4

GSFC Skill Code/Directorate Mean and Standard Deviation
of Annual Departures

Annual
Mean Annual Standard

Skill Code Directorate Departures Deviation

Clerical 100/200 65.9 8.0
Professional Administrative 100/200 44.3 6.6
Scientist, Engineer 100/200 8.4 2.9
Technician 100/200 10.0 3.2
Wage Grade 100/200 11.6 3.4

Clerical 300 3.5 1.8
Professional Administrative 300 0.7 0.8
Scientist, Engineer 300 6.6 2.6
Technician 300 1.6 1.2

Clerical 400 6.1 2.5
Professional Administrative 400 0.004 0.07
Scientist, Engineer 400 4.1 2.0
Technician 400 0.0004 0.07

Clerical 500 8.8 2.9
Professional Administrative 500 0.05 0.21
Scientist, Engineer 500 12.1 3.5
Technician 500 1.1 1.0

Clerical 600 11.0 3.3
Professional Administrative 600 2.3 1.5
Scientist, Engineer 600 16.8 4. 1
Technician 600 4.9 2.2

Clerical 700 9.0 3.0
Professional Administrative 700 0.4 0.6
Scientist, Engineer 700 16.0 4.0
Technician 700 9.5 3.1

Clerical 800 8.9 2.9
Professional Administrative 800 1.0 1.0
Scientist, Engineer 800 18.2 4.3
Technician 800 4.4 2.1
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Table 5

GSFC Skill Code/Directorate Population Sizes, May 1973

Skill Code Directorate Population Size

Clerical 100/200 305
Professional Administrative 100/200 461
Scientist, Engineer 100/200 64
Technician 100/200 138
Wage Grade 100/200 162

Clerical 300 24
Professional Administrative 300 6
Scientist, Engineer 300 182
Technician 300 63

Clerical 400 27
Professional Administrative 400 3
Scientist, Engineer 400 168
Technician 400 3

Clerical. 500 61
Professional Administrative 500 38
Scientist, Engineer 500 335
Technician 500 45

Clerical 600 66
Professional Administrative 600 27
Scientist, Engineer 600 349
Technician 600 138

Clerical 700 58
Professional Administrative 700 7
Scientist, Engineer 700 442
Technician 700 263

Clerical 800 67
Professional Administrative 800 76
Scientist, Engineer 800 303
Technician 800 123
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Table 6

GSFC Skill Code/Directorate Size Lower Bound (99 Percent)

Skill Code Directorate I h
99

Clerical 100/200 159
Professional Administrative 100/200 350
Scientist, Engineer 100/200 26
Technician 100/200 96
Wage Grade 100/200 116

Clerical 300 2
Professional Administrative 300 0
Scientist, Engineer 300 149
Technician 300 49

Clerical 400 0
Professional Administrative 400 2
Scientist, Engineer 400 143
Technician 400 2

Clerical 500 .23
Professional Administrative 500 35
Scientist, Engineer 500 288
Technician 500 33

Clerical 600 22
Professional Administrative 600 9
Scientist, Engineer 600 291
Technician 600 111

Clerical 700 19
Professional Administrative 700 0
Scientist, Engineer 700 386
Technician 700 242

Clerical 800 29
Professional Administrative 800 65
Scientist, Engineer 800 241
Technician 800 97

Goddard Space Flight Center
National Aeronautics and Space Administration

Greenbelt, Maryland September 4, 1973
039-03-43-13-51
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